首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9016篇
  免费   1437篇
  国内免费   1153篇
化学   6627篇
晶体学   80篇
力学   575篇
综合类   82篇
数学   961篇
物理学   3281篇
  2024年   8篇
  2023年   167篇
  2022年   187篇
  2021年   263篇
  2020年   323篇
  2019年   317篇
  2018年   233篇
  2017年   226篇
  2016年   393篇
  2015年   347篇
  2014年   523篇
  2013年   623篇
  2012年   753篇
  2011年   820篇
  2010年   561篇
  2009年   547篇
  2008年   643篇
  2007年   541篇
  2006年   469篇
  2005年   485篇
  2004年   351篇
  2003年   319篇
  2002年   317篇
  2001年   275篇
  2000年   226篇
  1999年   198篇
  1998年   184篇
  1997年   161篇
  1996年   155篇
  1995年   125篇
  1994年   147篇
  1993年   100篇
  1992年   115篇
  1991年   100篇
  1990年   75篇
  1989年   77篇
  1988年   42篇
  1987年   26篇
  1986年   37篇
  1985年   26篇
  1984年   16篇
  1983年   18篇
  1982年   13篇
  1981年   8篇
  1980年   8篇
  1978年   8篇
  1977年   7篇
  1976年   7篇
  1975年   5篇
  1974年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Fu  Yajing  Li  Ji  Wang  Hairui  Zhang  Jiahao  Ma  Zhijun  Yi  Qiong  Liu  Jianwen  Wang  Shiquan 《Journal of Solid State Electrochemistry》2023,27(9):2523-2531
Journal of Solid State Electrochemistry - FeS2/CoS and FeS2/CoS/C composites were synthesized by solvothermal method and following vapor phase vulcanization at mild temperature with binary oxide...  相似文献   
82.
Two-dimensional van der Waals heterostructures (2D vdWHs) have recently gained widespread attention because of their abundant and exotic properties, which open up many new possibilities for next-generation nanoelectronics. However, practical applications remain challenging due to the lack of high-throughput techniques for fabricating high-quality vdWHs. Here, we demonstrate a general electrochemical strategy to prepare solution-processable high-quality vdWHs, in which electrostatic forces drive the stacking of electrochemically exfoliated individual assemblies with intact structures and clean interfaces into vdWHs with strong interlayer interactions. Thanks to the excellent combination of strong light absorption, interfacial charge transfer, and decent charge transport properties in individual layers, thin-film photodetectors based on graphene/In2Se3 vdWHs exhibit great promise for near-infrared (NIR) photodetection, owing to a high responsivity (267 mA W−1), fast rise (72 ms) and decay (426 ms) times under NIR illumination. This approach enables various hybrid systems, including graphene/In2Se3, graphene/MoS2 and graphene/MoSe2 vdWHs, providing a broad avenue for exploring emerging electronic, photonic, and exotic quantum phenomena.  相似文献   
83.
Sulfide electrolytes with high ionic conductivities are one of the most highly sought for all-solid-state lithium batteries (ASSLBs). However, the non-negligible electronic conductivities of sulfide electrolytes (≈10−8 S cm−1) lead to electron smooth transport through the sulfide electrolyte pellets, resulting in Li dendrite directly depositing at the grain boundaries (GBs) and serious self-discharge. Here, a grain-boundary electronic insulation (GBEI) strategy is proposed to block electron transport across the GBs, enabling Li−Li symmetric cells with 30 times longer cycling life and Li−LiCoO2 full cells with three times lower self-discharging rate than pristine sulfide electrolytes. The Li−LiCoO2 ASSLBs deliver high capacity retention of 80 % at 650 cycles and stable cycling performance for over 2600 cycles at 0.5 mA cm−2. The innovation of the GBEI strategy provides a new direction to pursue high-performance ASSLBs via tailoring the electronic conductivity.  相似文献   
84.
Photothermal CO2 reduction is one of the most promising routes to efficiently utilize solar energy for fuel production at high rates. However, this reaction is currently limited by underdeveloped catalysts with low photothermal conversion efficiency, insufficient exposure of active sites, low active material loading, and high material cost. Herein, we report a potassium-modified carbon-supported cobalt (K+−Co−C) catalyst mimicking the structure of a lotus pod that addresses these challenges. As a result of the designed lotus-pod structure which features an efficient photothermal C substrate with hierarchical pores, an intimate Co/C interface with covalent bonding, and exposed Co catalytic sites with optimized CO binding strength, the K+−Co−C catalyst shows a record-high photothermal CO2 hydrogenation rate of 758 mmol gcat−1 h−1 (2871 mmol gCo−1 h−1) with a 99.8 % selectivity for CO, three orders of magnitude higher than typical photochemical CO2 reduction reactions. We further demonstrate with this catalyst effective CO2 conversion under natural sunlight one hour before sunset during the winter season, putting forward an important step towards practical solar fuel production.  相似文献   
85.
The incorporation of nanopores into graphene nanostructures has been demonstrated as an efficient tool in tuning their band gaps and electronic structures. However, precisely embedding the uniform nanopores into graphene nanoribbons (GNRs) at the atomic level remains underdeveloped especially for in-solution synthesis due to the lack of efficient synthetic strategies. Herein we report the first case of solution-synthesized porous GNR ( pGNR ) with a fully conjugated backbone via the efficient Scholl reaction of tailor-made polyphenylene precursor ( P1 ) bearing pre-installed hexagonal nanopores. The resultant pGNR features periodic subnanometer pores with a uniform diameter of 0.6 nm and an adjacent-pores-distance of 1.7 nm. To solidify our design strategy, two porous model compounds ( 1 a , 1 b ) containing the same pore size as the shortcuts of pGNR , are successfully synthesized. The chemical structure and photophysical properties of pGNR are investigated by various spectroscopic analyses. Notably, the embedded periodic nanopores largely reduce the π-conjugation degree and alleviate the inter-ribbon π–π interactions, compared to the nonporous GNRs with similar widths, affording pGNR with a notably enlarged band gap and enhanced liquid-phase processability.  相似文献   
86.
The electronic conductivity (EC) of metal–organic frameworks (MOFs) is sensitive to strongly oxidizing guest molecules. Water is a relatively mild species, however, the effect of H2O on the EC of MOFs is rarely reported. We explored the effect of H2O on the EC in the MOFs (NH2)2-MIL-125 and its derivatives with experimental and theoretical investigations. Unexpectedly, a large EC increase of 107 on H2SO4@(NH2)2-MIL-125 by H2O was observed. Brønsted acid–base pairs formed with the −NH2 groups, and H2SO4 played an important role in promoting the charge transfer from H2O to the MOF. Based on H2SO4@(NH2)2-MIL-125, a high-performance chemiresistive humidity sensor was developed with the highest sensitivity, broadest detection range, and lowest limit of detection amongst all reported sensing materials to date. This work not only demonstrated that H2O can remarkably influence the EC of MOFs, but it also revealed that post-modification of the structure of MOFs could enhance the influence of the guest molecule on their EC to design high-performance sensing materials.  相似文献   
87.
Non-oxidative dehydrogenation of propane is a highly efficient approach for industrial preparation of propene that is commonly catalyzed by noble Pt or toxic Cr catalysts and suffers from coking. In this work, ferric catalyst confined in a zeolite framework was synthesized by a hydrothermal procedure. The isolated Fe in the framework formed distorted tetrahedra, which were beneficial for the selective dehydrogenation of propane and reached over 95 % propene selectivity and over 99 % total olefins selectivity. This catalyst had a silanol-free structure and was oxygen tolerant, hydrothermally stable, and coke free, with a deactivation constant of 0.01 h−1. This study provided guidance for the synthesis of structural heteroatomic zeolite and efficient propane non-oxidative dehydrogenation over early transition metals.  相似文献   
88.
To synthesize high molecular weight poly(phenolic ester) via a living ring-opening polymerization (ROP) of cyclic phenolic ester monomers remains a critical challenge due to serious transesterification and back-biting reactions. Both phenolic ester bonds in monomer and polymer chains are highly active, and it is difficult so far to distinguish them. In this work, an unprecedented selectively bifunctional catalytic system of tetra-n-butylammonium chloride (TBACl) was discovered to mediate the syntheses of high molecular weight salicylic acid-based copolyesters via a living ROP of salicylate cyclic esters (for poly(salicylic methyl glycolide) (PSMG), Mn=361.8 kg/mol, Ð<1.30). Compared to previous catalysis systems, the side reactions were suppressed remarkably in this catalysis system because phenolic ester bond in monomer can be selectively cleaved over that in polymer chains during ROP progress. Mechanistic studies reveal that the halide anion and alkyl-quaternaryammonium cation work synergistically, where the alkyl-quaternaryammonium cation moiety interacts with the carbonyl group of substrates via non-classical hydrogen bonding. Moreover, these salicylic acid-based copolyesters can be recycled to dimeric monomer under solution condition, and can be recycled to original monomeric monomers without catalyst under sublimation condition.  相似文献   
89.
Divergent synthesis of fluorine-containing scaffolds starting from a suite of raw materials is an intriguing topic. Herein, we report the solvent-controlled rhodium-catalyzed tunable arylation of 1-bromo-2,2-difluoroethylene. The selection of the reaction solvents provides switchable defluorinated or debrominated arylation from readily available feedstock resources (both arylboronic acids/esters and 1-bromo-2,2-difluoroethylene are commercially available). This switch is feasible because of the difference in coordination ability between the solvent (CH2Cl2 or CH3CN) and the rhodium center, resulting in different olefin insertion. This protocol allows the convenient synthesis of monofluoroalkenes and gem-difluoroalkenes, both of which are important scaffolds in the fields of medicine and materials. Moreover, this newly developed solvent-regulated reaction system can be applied to the site-selective dechlorinated arylation of trichloroethylene. Overall, this study provides a useful strategy for the divergent synthesis of fluorine-containing scaffolds and provides insight into the importance of solvent selection in catalytic reactions.  相似文献   
90.
The unique intermolecular van der Waals force in emerging two-dimensional inorganic molecular crystals (2DIMCs) endows them with highly tunable structures and properties upon applying external stimuli. Using high pressure to modulate the intermolecular bonding, here we reveal the highly tunable charge transport behavior in 2DIMCs for the first time, from an insulator to a semiconductor. As pressure increases, 2D α-Sb2O3 molecular crystal undergoes three isostructural transitions, and the intermolecular bonding enhances gradually, which results in a considerably decreased band gap by 25 % and a greatly enhanced charge transport. Impressively, the in situ resistivity measurement of the α-Sb2O3 flake shows a sharp drop by 5 orders of magnitude in 0–3.2 GPa. This work sheds new light on the manipulation of charge transport in 2DIMCs and is of great significance for promoting the fundamental understanding and potential applications of 2DIMCs in advanced modern technologies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号